

Chemistry 175/273: Outline

Statistical Mechanics

Professor Grant M. Rotskoff

e-mail: rotskoff@stanford.edu

Additional reading material for each lecture is specified as Author-Chapter-Section. For example, Chandler, Chapter 3, Section 2 is rendered Chandler-3-2. Most of the lectures are not based directly on these materials, so you may find that the presentation differs a bit.

1. Statistical Mechanics as the connection between microscopic and macroscopic
 - Counting states at equal probability
 - Microcanonical postulate
 - *Reference:* Chandler-3-1, Chandler-3-2
2. Computing the microcanonical partition function and Derivation of the Boltzmann distribution
 - Defining ensemble averages
 - Dilute solution and scaling of the partition function
 - Stirling's approximation
 - *Reference:* McQuarrie-1-5, McQuarrie-2-2
 - Perturbative expansion around the microcanonical ensemble
 - Thermodynamic limit, fluctuations disappear
 - *Reference:* Widom-1-3, Chandler-3-2
3. Canonical partition function and fluctuations & response
 - Dynamics and averaging (ergodicity)
 - Free energies as cumulant generating functions
 - Heat-capacity via a fluctuation response relation
 - *Reference:* Chandler-3-3
4. Partition function a non-interacting monoatomic gas
 - Derivation of q_{trans} from particle in a box
 - *Reference:* McQuarrie-5-1
5. Rotational partition function and vibrational partition function
 - Derivation of q_{rot}
 - Derivation of q_{vib}
 - *Reference:* McQuarrie-6-1 / 6-2 / 6-3
6. From the molecular partition function to the ideal gas law
 - Combining all the QM contributions to the molecular energy
 - Deriving the ideal gas law
 - *Reference:* McQuarrie-6-1 / 6-2 / 6-3

7. Entropy of mixing

- Sackur-Tetrode Equation
- Gibbs' Paradox
- *Reference:* Sethna-5-1, McQuarrie-5-2

8. Moving between ensembles

- Grand canonical ensemble
- NpT ensemble
- Legendre transforms recovering thermodynamic potentials
- *Reference:* McQuarrie-3

9. Equilibrium constants from Statistical Mechanics!

- contributions to heat capacity from molecular partition function
- *Reference:* Chandler-4-6, McQuarrie-9-1

10. Recap for simple particles, Bose-Einstein and Fermi-Dirac statistics

- Condensation
- *Reference:* Chandler-4-4, Chandler-4-5, McQuarrie-7

11. Bose-Einstein and Fermi-Dirac statistics (II)

- Free electron model
- Classical limit
- *Reference:* Chandler-4-4, Chandler-4-5, McQuarrie-7

12. Free electron model

- Free electron model
- Low temperature scaling of the heat capacity
- *Reference:* Chandler-4-4, Chandler-4-5, McQuarrie-7

13. Phase transitions

- Necessity of long range correlations
- *Reference:* Chandler-5-1

14. Phase transitions in the Ising model

- Analytical solution in 1D
- *Reference:* Chandler-5

15. Modern approaches to the theory of phase transitions

- Mean-field theory
- Renormalization group
- The necessity of computer simulations

- *Reference:* Chandler-5

16. Computation: Sampling the Boltzmann Distribution

- Metropolis Criterion & Detailed Balance
- Markov Chain Monte Carlo (MCMC) algorithms
- *Reference:* Chandler-6, Krauth-1

17. Computing radial distribution functions

- Hard Disk MCMC
- Introduction to the radial distribution function
- *Reference:* Widom-6, 7
- Virial expansion, second virial coefficient from $g(r)$

18. Molecular Dynamics I

- Ergodicity recap, Initialization
- Force fields, where do they come from?
- Lennard-Jones potential, multipole expansion
- *Reference:* Chandler-6, Krauth-1

19. Molecular Dynamics II

- Hamilton's equations
- Symplectic integration and energy conservation

20. Conserving energy during integration

- Velocity verlet algorithm
- Constant temperature simulation

21. Dynamical properties and collision theory

- Computing the diffusion coefficient
- Langevin equation

22. Transport phenomena

- Phenomenology
- Continuity equation

23. Transport phenomena II

- Fokker-Planck equation
- Onsager reciprocity

24. Diffusion in liquids

- Stokes-Einstein
- Caging effects

25. Transition State Theory

- Eyring equation
- Limitations

26. Linear Response Theory and beyond

- Response functions
- High-level description of fluctuation theorems