Problem Set 2

1. Thermodynamics of Hurricanes

A Carnot engine is a device that uses heat to raise energy of material; subsequently, some of
the additional energy is extracted adiabatically, i.e., with no heat flowing, to do work. Let’s
say this happens at a hot temperature Tx. It is not possible to perfectly convert the heat
absorbed into work (this is Kelvin’s statement of the Second Law of Thermodynamics).
As such, the excess heat in the system must be dumped into a heat sink, which is simply a
thermal bath at temperature 7.

The efficiency of a Carnot engine is measures the fraction of work obtained from the input
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Because the Carnot engine is idealized, it actually obtains this maximal efficiency and we
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Asyou certainly learned in general chemistry, atmospheric pressure affects the boiling point
of water. Normally, this is explained using the Clausius-Clapeyron equation, which says
that the chemical potentials of the gas phase and the liquid phase are equal at coexistence,
ie.,

,ugas(T*) = /Jliq(T*)- (3)

Here, we will derive this result using a more mechanical perspective, based on the notion
of a Carnot engine, which is adapted from Mehran Kardar. Suppose we wanted to build
an engine that uses one mole of water to drive a piston. Initially, the pressure is P and the
temperature is 7. A quantity of heat Q. is used to produce steam from the water, leading
to an increase in volume, V. All Carnot cycles involve an adiabatic step, in this case, the
pressure is decreased to P — AP. Finally, we use the heat sink to condense the steam back
into water so that the system is at pressure P — AP and temperature 7 — AT

(a) Assuming that the work is done isothermally at temperature 7', write an expression
for the work in terms of the variables defined above (including but not limited to P,
V,T).

(b) Assuming the Carnot efficiency is realized, derive an expression for the ratio of the
change in pressure to the change in temperature at coexistence between liquid and
gas. Your answer should only depend on the heat, volume, and temperature. Hint:
in class we used the Gibbs-Duhem equation; this is its moment to shine.

(c) Theexpression you have derived tells you about how the coexistence pressure changes
with temperature, which is also a formulation of the Clausius-Clapeyron equation.
The inverse relation tells you that lowering the pressure will increase the coexistence
temperature—it’s cool! Interestingly, you can think of the planet like this. Assume
that the ocean surface is 25 C and the upper atmosphere is -80 C. As the surface wa-
ter evaporates, it condenses and does work on the planet. Assuming that 9o million



Figure 1: The random polymer model is specified by a set of n random displacements 7; for
i=1,...,n.

tons of water per hour are required to maintain a hurricane, estimate the maximum
possible power output (work per unit time) of a hurricane. Assume that the latent
heat of vaporization of water is 2.3 X 10° J/kg. What are the implications of ocean
warming for hurricanes?

2. Insights into polymer structure

You may have read about the recent advances in protein structure prediction. One of chal-
lenges in understanding protein structure relates to configurational entropy: the number
of states accessible by a long polymer is large. Let’s consider the following simple model
of a polymer to help us suss out the contributions of entropy to polymer structure. In this
model, the polymer is a random walk: each segment of the polymer is represented by a
vector 7; of magnitude £ for i = 1,...,n where n is the total number of monomers of
the polymer. Let’s make the approximation that each segment is an independent random
displacement on a regular cubic lattice. Explicitly, in d = 2, the ith displacement of the
vector 7; is T, |, —, or « all with probability 1/4. For simplicity, let’s also assume, for
simplicity, that the segments can overlap. See Fig. 1.

(a) Compute the total number of states of a polymer of length n in dimension d.
(b) Write this expression in the form Q = a”.

(c) You can find the “end-to-end” vector by summing up the displacements along the
polymer. That is,

R=¢ Zn: 7 (4)
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Calculate the average value (R).



(d) Calculate the mean-squared end-to-end distance of the polymer /(R - R). How
does your answer depend on the dimension d?

(e) A classical model of polymers in favorable solvent conditions predicts that the mean-
squared end-to-end distance scales like n3/5. Why might a good solvent—a solvent
that binds favorably to the polymer and prevents it from binding with itself—change
the scaling relative to your prediction?

3. Simulating Random Polymers
Computer simulations, a topic we will discuss in much greater depth later in the course,
are an essential tool in theoretical chemistry. As we saw last week, we were able to extract
some important universal information about the distribution of random spins and how it
scales in the limit n — co. Using the provided python template, or writing your own
simulation from scratch, let’s simulate the random polymer in Problem 2 in dimensions
d = 2 and d = 3 to gain numerical insight.

(a) Write a function to collect samples of the polymers of length n. One way to do
this would involve creating an n by 3 numpy array to store the coordinates for each
monomer. Set the starting point at the origin then use a random number generator
to pick which direction the polymer moves. With each update, store the new data
point in the array. Collect a few samples for n = 100 and plot them. 3D plots can be
a little tricky, here’s a clean way to generate them.

1+ import matplotlib.pyplot as plt
> from mpl_toolkits.mplot3d import Axes3D

%matplotlib notebook

fig = plt.figure()

ax = fig.gca(projection='3d")
ax.plot(x, y, 2z)

s plt.show()
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Line 4 is a nice command specifically when using a Jupyter notebook in order to get
interactive figures. This will let you rotate the figure to see it from different angles.
When running from the command line the figure should be interactive automatically.
The input you need to give are 1-dimensional arrays containing each x, y, and z
coordinate of all the data points.

Do the polymers look globular? Or are they more elongated?

(b) Estimate the average total displacement (R) for the polymer in d = 2 with n =
500 using a similar method to question 1b from homework 1. How many of your
simulations actually realize the mean value?

(c) Based on your answer to (b), explain why the root mean squared end-to-end distance
is a better measure of the extent of the polymer.

(d) Estimate 4/(R - R) for polymers of lengths n = 100, 500, 1000 in d = 3. Is your

answer consistent with the scaling you predicted in the previous problem?



