Problem Set 5: Chemistry 175/263

This homework is due on Gradescope by class time on Feb. 12, 2025.

1. Heat Capacity Catastrophe

Consider a low temperature solid (crystalline or amorphous, like a glass). A defining char-

acteristic of such materials is their relatively small microscopic motions. That is, each atom
(0)

r; remains close to its equilibrium position r;”. Hence, if we want to describe the position

of the atom, it is sensible to write r; = r;o) +06r;, where or; is a small displacement. Within
the regime where dr; is small, we can expand an expression for the potential energy of N

particles as
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Note that this is a harmonic (or quadratic) approximation. This formula is hard to use in
general because we don’t know Kj;; and its expression could be very complicated. How-
ever, if we use a decomposition into “normal modes” in which the Hamiltonian is diagonal,
we can simplify the calculation. Let’s index the modes by @ and denote the ath normal
mode by &,. The normal modes are just a new set of coordinates built from linear combi-
nations of the positions. Then the Hamiltonian becomes
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where the first term in the summand corresponds to the kinetic energy and the second term
in the summand is the potential energy. Here m,, is the “mass” of the normal mode and
wq is its frequency.

(a) Compute the heat capacity of this system. Note that you can avoid doing any com-
putation if you remember a fact about quadratic degrees of freedom.

(b) You should find that the heat capacity does not depend on temperature. How does
this compare with the calculation we did in the free electron model for non-interacting
fermions?

(c) The model we are considering is one in which each atom is essentially vibrating
around its equilibrium position. At low temperature, approximate the vibrational
contribution to the heat capacity assuming that only the vibrational ground state and
the first vibrational excited state contribute. Write your expression for a single mode
at frequency w.

(d) To compute the total heat capacity, you need to calculate

Cy/kp = é / §()Cy (0)dw

where g(w) is the density of states for the system. Assume that only the first normal
mode w contributes to every particle. Write an expression for g(w). Hint: you may
want to use the Dirac § function.



(e)

(f)

Using your expression for g(w) write an expression for the heat capacity of the sys-
tem. What happens in the limit that 7 — 0. Is this better or worse than the result
from (a)?

It turns out that this model of independent low-frequency vibrations is not quite
enough to recover the experimental scaling of the heat capacity with temperature at
low temperatures. The reason is that it neglects collective fluctuations of the whole
solid—these collective modes, called phonons, have much lower energy than the indi-
vidual particle displacements. Phonons are essentially standing waves of continuous
acoustic modes, and thus g(w) for phonons is proportional to w?, just like in the
particle in the box model (where the solutions are also standing waves). Write an ex-
pression for C,, / kg using this scaling for g(w) and determine the scaling exponent of
C, with respect to T. That is C,, oc T%; find x. The variable of integration is w so you
do not need an an explicit value for the integral. Take advantage of a u-substitution
to extract the overall temperature scaling. Why is this scaling different from what
we observed in the free electron model of non-interacting fermions?

2. Electromagnetic Catastrophe

Before Quantum Mechanics, it was not clear how electromagnetic radiation could come
to thermal equilibrium. You may have encountered this fact in QM as the “ultraviolet
catastrophe”, which observes that classical equipartition predicts that the energy density of
electromagnetic radiation in thermal equilibrium diverges as the frequency increases. The
electromagnetic field has normal modes which are standing waves (just like the particle in
the box solutions). Each wave travels at the speed of light and thus has frequency w = ck,
where k is the magnitude of the wavevector k.

(2)

(b)

(e)

Using the fact that photons are bosons, write an expression for the average number of
photons per eigenstate with frequency w. Note that it is reasonable to approximate
the photons as non-interacting and that, because photons can be created or destroyed
spontaneously, assume that u = 0.

In class we derived an expression for the density of states g(k)dk = g—f_;dk. Use this
to derive an expression for g(w)dw. Don’t forget the Jacobian!

Calculate the photon energy per unit volume u(w)dw using your expression for
g(w), the energy of a photon with frequency w, and average population of each
mode. This is an exciting result, you should get the formula for Planck’s Law we
presented without derivation near the begin of Chem 173.

At low frequency, how does your result compare with the expectation from classical
equipartition?
A high frequency, how does your result compare with the expectation from classical
equipartition.

3. Ising Universality

We introduced the Ising Hamiltonian for spins with oy € {-1, 1} of the form
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Unlike the non-interacting models we have discussed in the class up to this point, the
partition function for the Ising model does not factorize in simple single spin contributions.

This model also serves as the basis for analyzing liquid vapor transitions. Consider, instead
of spins, occupancy variables n; € {0, 1}. Suppose that there is an attractive interaction
between adjacent occupied cells, i.e., there is a term in the Hamiltonian of the form

—EZnil’lj.

(i)
(a) Assume that the system can exchange material and energy with the environment.
‘Write an expression for the probability of a given microstate {ni,...,ny}.

(b) Find an explicit mapping between the Ising Hamiltonian and this lattice gas model.
That is find expressions for € and the chemical potential x4 in terms of 4 and J.



